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Abstract

In this paper we call attention to a category of combinatorial games, which we call
comply/constrain games or games with a Muller twist. We say that we put a Muller twist
on a familiar game if we modify that game so that each move in the familiar game is
followed by a constraint on the next player’s move. We solve Odd-or-Even Nim, which is
a variant of Nim with the Muller twist that each player specifies whether their opponent’s
next removal is to be of an odd or even number of objects, solve a generalization of Tall-
or-Short Wyt Queens, which puts a Muller twist on Wyt Queens, report some results for
Fibonacci-or-Not Nim, which is a take-away game in which the possible constraints are
that the number removed be a Fibonacci number or not, and propose some other games,
such as Nought-or-Cross.

1. Motivation

The game Quartor, created by Blaise Muller and published by Gigamic, was one of the
five Mensa Games of the Year in 1993 and has received other international awards. The
sixteen game pieces show all combinations of size (short or tall), shade (light or dark),
solidity (shell or filled), and shape (circle or square). Two players take turns placing
pieces on a four by four board and the object is to get four in a line with the same
characteristic - all short, for example. Only one piece can go in a cell and, once placed,
the pieces stay put. Blaise Muller’s brilliant twist is that you choose the piece that your
opponent must place and they return the favor after placing it.

We will say that we put a Muller twist on a familiar combinatorial game if we modify
that game so that each player’s move of game pieces in the familiar game is followed by
that player’s choice of a constraint, from a well defined set of constraints, on the next
player’s move. We will refer to such a game as a comply/constrain game.
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Constraints are common in games. If our opponent in Tic-Tac-Toe [3] takes the
center square, we cannot play there. However, since that constraint does not involve a
choice after the physical move, we do not consider Tic-Tac-Toe in the comply/constrain
category of games.

Nor would we call Fibonacci Nim (see [1, 5, 13]) a comply/constrain game. (It is
traditionally thought of as being played with a single pile of beans, in which the first
player can take any number of beans provided they do not take them all. Thereafter
the players alternate with the constraint that no player can take more than twice the
amount just taken by the previous player.) Although the constraint cannot be deduced
by a newcomer observing the pile of beans, the constraint is strictly determined by the
previous physical move and thus is not in the comply/constrain category.

A position in a comply/constrain game consists of both a physical configuration of
game pieces and a constraint which is not automatic from the current configuration or
the move which was made from the previous configuration.

Muller’s Quartor is the first comply/constrain game that we know of and we know
of only a few others in the literature.

The second comply and constrain game that we have seen is introduced in the Nov-
2001 issue of The College Mathematics Journal as Problem 714. The problem posers, A.
Holshouser and H. Reiter, called the game Blocking Nim. The game is built on Nim, which
is reviewed in the next section of this paper. Their modification involves a pile-specific
restriction on the number that might be removed from each pile. A typical position might
be (7 not 3, 5 not 2, 6 not 6) which means that from the pile of 7 we can take any number
except 3, and we cannot take exactly 2 from the pile of 5, nor can we take all of the pile
of 6. One of the many options for that position is (7 not 7, 5 not 5, 2 not 1)

The other comply and constrain games that we know of are due to the same ener-
getic pair, Holshouser and Reiter. One game involves three piles with one configuration
blocked. A typical position might be (5, 4, 3) with the restriction that we cannot present
the configuration (5, 4, 1). The authors have completely solved the three pile problem.
Their paper [10] mentions that the problem with a larger number of piles at the time of
writing is still unsolved. Another paper [11] allows blocking several configurations with
a single pile. After we submitted the original version of this paper, we found another of
their papers [12], in which they consider a composite of subgames with blocking in each
subgame.

2. Definitions

If we present our opponent with certain positions and play optimally after that, we are
guaranteed to win. Such positions are called P-positions, indicating that the previous
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player wins if they play optimally for the remainder of the game [1, 9]. If we are ever
able to present to our opponent a P-position, our opponent must present to us a non-P-
position and, from there, we will be able to present a P-position.

An option is a position that might occur while a move is the position that does occur.
We will call an option B of a position A a child of A and will refer to A as a parent of B.

It is clear that two properties characterize the set of P-positions. A subset C of all
possible game positions is the set of P-positions if and only if it satisfies both of the
following

P-Properties:

(P1) No position in C has a child in C; in other words, no option available to a position
in C is an element of C.

(P2) Every position not in C has a child in C; that is, every position not in C has an
option in C.

Obviously, as a special case of (P2), the terminal positions are in C, since they are
childless positions.

The game of Nim involves piles of counters – say piles of beans. Players take turns
removing beans. Each player in their turn must take a positive number of beans from
one pile of their choosing. The first player that cannot move loses.

It is well known (see [1, 3, 9]) that the P-positions in Nim are easily recognized.
Express the pile sizes in binary notation so that each pile size has either a zero or a
one in each of the units place, the two’s place, the four’s place, etc. A position is a
P-position in Nim if and only if those binary representations have an even number of
ones for each power of two. For example, three piles with 4, 8, and 12 beans have binary
representations 100, 1000, and 1100 so there are no one’s in the units or twos place and
two ones in each of the fours and eights place; therefore three piles with 4, 8, and 12
beans is a P-position in Nim. Succinctly put, the P-positions of Nim are precisely those
positions for which the nim-sum (binary sum without carry) of the pile sizes is zero.

3. Odd-or-Even Nim

In this section we put our first Muller twist on classical Nim, introducing Odd-or-Even
Nim: The first player in Odd-or-Even Nim specifies whether the second player is to take
an odd or an even number of beans. Each move after that consists of a comply phase
and a constrain phase. In the comply phase, the player gets to choose the pile but must
comply with the odd or even restriction on the number of beans removed. In the constrain
phase, the player specifies that the opponent must take an odd or even positive number
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of beans on their next move. A position in this game is of the form (n1, . . . , ns; even) or
(n1, . . . , ns; odd), where s is the number of piles, and ni is the size of the i-th pile.

Theorem 1. The set of P-positions for Odd-or-Even Nim is the set of positions satis-
fying one of the following conditions:

(i) pile sizes nim-summing to one and constraint of even,
(ii) pile sizes nim-summing to zero and constraint of even, or
(iii) all pile sizes even and nim-summing to zero and constraint of odd.

Proof. Denote by C the set satisfying (i), (ii), or (iii) (“C” for “Candidate set”). Let
C.i be those elements of C who earn membership by satisfying property (i); define the
subsets C.ii and C.iii in a similar manner.

We will show that C satisfies both properties of P-positions. For the first property,
(P1), we will consider two cases – first the children of positions in C.i and C.ii and then
the children of C.iii.

To see that no child of a position in C can be in C, note that the nim-sum of every
position in C is zero or one. Any position in C must have pile sizes such that we have
an even parity in the twos place and the fours place and the eights place, etc. If the
constraint is that an even number is to be removed, the parity must be switched in at
least one of those places so no child of a position in C.i or C.ii can be in C.

Since each position in C.iii involves all pile sizes even as well as a constraint of odd and
a nim-sum of zero, we have all zeros in the units place and an even number of zeros in the
other places. We must “borrow” in order to remove an odd number. This “borrowing”
causes at least one parity switch in the other places and thus makes a nim-sum of zero
or one impossible. Therefore no child of a position in C.iii can be in C.

To prove (P2), we will consider three cases – even constraint, odd constraint with
nonzero nim-sum, odd constraint with zero nim-sum and at least one pile size odd.

Consider being faced with a position with an even constraint that is not in C. Its
nim-sum cannot be zero or one. We can make be zero all of the column sums except
possibly the last. We can then constrain the next move to be even and present a member
of C.i or C.ii.

Consider now being faced with a position with an odd constraint that is not in C.
Then either the nim-sum is nonzero or not all of the pile sizes are even. In the case of
the Nim-sum being non-zero, we can make all places except perhaps the last have even
parity and thus present a member of C.i or C.ii.

The only type of position in the complement of C which has not been considered has
an odd constraint, a zero nim-sum, and at least one pile size odd. If presented with such
a position, we can remove a single bean from one of the odd sized piles and thus produce
a position with an even parity in every place except possibly the last; thus we can present
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a position with a nim-sum of zero or one and constrain their move to be even. Therefore,
every position not in C has a child in C.

This proves that the elements of C are the P-positions.

4. Fibonacci-or-Not Nim

In Odd-or-Even Nim we partitioned the natural numbers into the set of odds and its
complement. Any set of natural numbers yields a partition which yields such a game.
We considered sets determined by the range of functions defined on the set of natural
numbers with positive integer values; the constraint set for each game consisted of just
two elements – either the player must pick a number in the range of f or the player
cannot. We concentrated on functions whose values have a unique representation for the
set of natural numbers as sums of values of f , which will always happen if f satisfies, for
instance f(k + 1) ≤ 2f(k).

One example of f -or-not Nim that we studied involves f(n) = Fn+1 where Fn is the
n-th Fibonacci number. In particular, One-Pile Fibonacci-or-Not Nim is a single pile
take-away game in which the constraint is either to remove a Fibonacci number of beans
or to remove a non-Fibonacci number of beans.

One approach to finding P-positions is similar to the Sieve of Eratosthenes. Consider
the terminal position of having three beans and being constrained to take a non-Fibonacci
number of beans. This position, denoted by (3;not), is clearly a P-position and thus any
possible parent is a non-P-position. We can immediately mark the following as non-P-
positions: (4;Fib), (5;Fib), (6;Fib), (7;not), (8;Fib), (9;not), etc. So we can start with
0 beans and sieve out positions of each constraint (including (144;Fib) and (145;not));
then go to 1 bean (since (1;Fib) had not been sieved out) and sieve out some more. We
continue with increasing pile size. Those positions not sieved out are P-positions.

A similar approach looks at possible children rather than possible parents. For exam-
ple, once we have the P-positions for up to eleven beans, we can determine that (12;Fib)
is a P-position by verifying that none of its children are P-positions.

We list here the pile sizes up to 500 which, with the appropriate constraints, give a
P-position for Fibonacci-or-Not Nim. This solves the game up to 500 beans. It would
be interesting if we could give some simple rule for determining whether or not (n;Fib)
was a P-position for general n.
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0 1 2 3 12 18 27 38 42 49 53 60 64 71
75 86 95 102 106 112 118 122 128 132 148 154 158 165
172 176 190 194 200 212 216 222 226 232 238 242 248 252
258 264 268 274 278 284 288 294 300 306 310 317 324 336
342 346 352 362 368 374 384 388 394 400 410 414 420 424
436 440 446 456 460 466 476 482 488 492 498

We list here a few winning positions in lexicographical order for Two-Pile Fibonacci-
or-Not Nim with the understanding that if (n, p) is a winning position then (p, n) is also
a winning position with the same constraint. The only P-positions with a constraint of
“not− Fibonacci” up to 150× 150 are:

(0, 0) (0, 1) (0, 2) (0, 3) (1, 1) (1, 2) (1, 3)
(2, 2) (2, 3) (3, 3) (4, 4) (4, 5) (4, 6) (4, 7)
(5, 5) (5, 6) (5, 7) (6, 6) (6, 7) (7, 7) (8, 8)
(8, 9) (8, 10) (8, 11) (9, 9) (9, 10) (9, 11) (10, 10)

(10, 11) (11, 11) (12, 13) (13, 13) (13, 14) (13, 15) (14, 14)
(14, 15) (15, 15) (17, 22) (18, 21)

and the P-positions with constraint “Fibonacci” up to 20× 50 are:

(0, 0) (0, 12) (0, 18) (0, 27) (0, 38) (0, 42) (0, 49) (1, 17) (1, 26)
(1, 32) (1, 41) (1, 48) (2, 19) (2, 25) (2, 29) (2, 39) (2, 43) (3, 20)
(3, 30) (3, 40) (3, 44) (3, 50) (4, 4) (4, 16) (4, 22) (4, 31) (4, 42)
(4, 46) (5, 21) (5, 32) (5, 36) (5, 47) (6, 23) (6, 29) (6, 33) (6, 43)
(6, 49) (7, 24) (7, 30) (7, 34) (7, 44) (7, 48) (8, 8) (8, 25) (8, 35)
(8, 39) (9, 20) (9, 27) (9, 36) (9, 47) (10, 26) (10, 33) (10, 37) (10, 49)
(11, 28) (11, 34) (11, 38) (11, 48) (12, 12) (12, 19) (12, 23) (12, 29) (12, 35)
(12, 39) (12, 45) (13, 24) (13, 30) (13, 40) (13, 44) (13, 50) (14, 25) (14, 31)
(14, 37) (15, 32) (15, 38) (15, 42) (16, 16) (16, 22) (16, 26) (16, 33) (16, 45)
(16, 49) (17, 17) (17, 21) (17, 28) (17, 40) (17, 44) (17, 50) (18, 18) (18, 25)
(18, 35) (18, 41) (19, 19) (19, 30) (19, 39) (20, 20) (20, 26) (20, 36) (20, 46)

It is natural to conjecture that the P-positions with constraint “not − Fibonacci”
involve relatively few beans while P-positions with constraint “Fibonacci” can involve
arbitrarily large numbers of beans. There is an intriguing amount of near-regularity in
the P-positions but Fibonacci-or-Not Nim has yet to be solved.
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5. Tall-or-Short Wyt Queens

The game pieces in Wyt Queens all glide in a queenly manner to one corner of the
chessboard. If they all glide to the northwest corner of the chess board then each journey
must be one of: due north, due west, or due northwest along a diagonal. The queens have
the ghost-like qualities that they can pass through each other and several can occupy
the same cell at the same time. Just as you would expect, each player in their turn,
persuades the queen of their choice to glide a non-zero number of cells and the first
player that cannot move loses.

It turns out that anyone who can play Nim well can quickly learn to play Wyt
Queens well. A queen on a certain cell is equivalent to a certain size pile in Nim, called
the Sprague-Grundy value. (Sprague-Grundy theory is fully and beautifully developed
in Winning Ways [1], Fair Game [9], and On Numbers and Games [2], as well as some
earlier sources.) Once we determine the Sprague-Grundy values of the various cells on
the chessboard, we can apply the results of Nim theory – a position is a P-position if
and only if the nim-sum of the Sprague-Grundy values is zero.

A queen in the northwest corner is equivalent to a zero sized pile since such a queen
is in a terminal position; thus, the Sprague-Grundy value of such a location is zero.

A game position of a queen in one of the two cells sharing a border with that northwest
corner cell is equivalent to a nim pile with a single bean since the only option from such
a position is to glide to a position which is equivalent to no beans.

Similarly, a game position of a single queen two cells below the northwest corner is
equivalent to two beans since it has options equivalent to zero beans or one bean. Another
position equivalent to two beans is the location immediately southeast of the northwest
corner since it has options of zero (glide like a bishop) and one (glide like a rook).

The cell adjacent to the previous two cells that we have discussed is very interesting.
The only options are 1 and 2 so 0 is not an option from this cell. However, from any of
its options, we can move to a zero cell. This is called a non-terminal zero position.

A non-terminal zero position acts just like an empty pile of beans except that there
might be a finite number of moves, each of which can be “reversed”, until we reach a
terminal zero.

We can continue in this manner and assign an equivalent heap size to each of the
cells. It turns out that a single queen in the southeast corner of a standard eight by eight
chessboard is equivalent to a nim heap of five beans.

The Sprague-Grundy value of a position in Wyt Queens is the Nim-sum of the
Sprague-Grundy values of the locations of the queens. We have discussed six cells so
far and the locations are equivalent to pile sizes 0, 1, 2, 2, 0, 5. The nim-sum expressed
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in binary is 100 and removing four from the pile of five will produce a position with a
nim-sum of zero. We know that we can do this since the Wyt Queen in the southeast
corner must be able to glide to some cell with Sprague-Grundy value one because to have
a value of five it must have one as an option.

The game of Tall-or-Short Wyt Queens involves game pieces of two heights – say three
tall and five short Wyt Queens. There are two elements of the constraint set – “She who
glides must be tall.” and “A short must glide.”.

We can think of playing Tall-or-Short Wyt Queens as two subgames and, in our turn,
we are constrained to make a single move in two subgame specified by our opponent and
we are to constrain our opponent’s next move to one of the two subgames. You may
prefer a greater variety of queens, say blonds, redheads, etc., so our theorem will concern
k subgames.

Definition 2. Given k ordinary impartial games G1, . . . , Gk, the forced-subgame sum is
the comply/constrain variation where the constraint consists of forcing your opponent to
play in a specific game.

Since it is easily verified that the Sprague-Grundy values for the Wyt Queens have
the property that no position with value one has only options with non-terminal zero
Sprague-Grundy values, we can use the following theorem to play well the game of Tall-
or-Short Queens.

Theorem 3. If none of the subgames of G1, . . . , Gk have a reachable position of Sprague-
Grundy value 1 whose only options are non-terminal subgames of value 0, then the P-
positions in the forced-subgame sum of G1, . . . , Gk all have the constraint in a subgame
of value 0 and are of two types:
(i) Positions in which the constraint is to play in a terminal game.
(ii) Positions in which the total number of non-terminal subgames of value 0 is odd, and
there are no terminal subgames.

Proof. Let C be the set of positions that the theorem claims forms the set of P-positions,
and let C.i be the set of positions that are in C by virtue of case (i) above and C.ii be
the set of positions in C in case (ii) above.

The proof will involve four steps. The first two, in which we will show that (P1)
holds, are: the children of positions in C.i cannot have a child in C, nor can the children
of C.ii.

Positions in C.i are terminal, and thus have no children in C.

If we present a member of C.ii, the only children will have a nonzero value for the
subgame that we constrained our opponent to. The opponent will thus have to present
a position with an even number of subgames with zero value. None of those zero values
are terminal. Thus, positions in C.ii have no children in C.
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In the remaining two steps, in which we show that (P2) holds, we consider the ways
in which we could be presented with a position in the complement of C: Either we have
a nonzero value in the game that we are constrained to or we have a non-terminal zero
in that subgame and an odd number of other zero values.

Assume that we are constrained to play in a subgame with a value 1. Then we can
move to a terminal 0, and constrain our opponent to play in the same game. (This is why
we needed the assumption that no subgame has a value of one whose only children have
non-terminal zero values.) If we are constrained to play in a subgame with a value 6= 1,
we can either reply with a zero value in that subgame or to reply with a nonzero value in
that subgame, in order to present an odd number of zero values. In either case, we will
reply constraining to a subgame with a zero value. If we can reply with an terminal zero
in any subgame, we should constrain to that subgame; otherwise, we make that subgame
be zero or not in order to present an odd number of zeros.

If we are presented with a position in which we must play in a subgame with a non-
terminal zero value and an odd number of other zero values, we should constrain to one
of the odd number of zero valued subgames.

White Knights [1] must always approach the northwest corner of the chessboard.
We cannot use the theorem above to play Tall-or-Short White Knights since it is easily
verified that there are locations with value one whose only options are non-terminal zeros.

In Non-sovereign Wyt Queens we point the queen just moved to face north or west or
northwest. The next player to move that queen must move in the direction that the queen
is pointed. This is not a comply/constrain game since the constraint is not necessarily on
the opponent’s next move. By the work of Holshouser and Reiter [12], Non-sovereign Wyt
Queens can be solved by constructing a dictionary of Sprague-Grundy values associated
with each position, where a position is a pair of a cell and a direction.

6. More Unsolved Games with a Muller Twist

Any classical game where a move involves placing a piece of some type and attempting
to create some configuration can be given a Muller twist by constraining the piece type
to be used. For example, Nought-or-Cross is Tic-Tac-Toe played on a three by three
board [1] with the twist that we specify whether the opponent is to next place a nought
or a cross; the first to get three in a line of the same symbol wins. Similar examples are
Tic-Tac-Toe on a 4 by 4 by 4 board [6], on other graphs [4, 7, 8], and Toe-Tac-Tic [3].

If we applied that particular Muller twist to Chess, each player would specify the
color of the piece to be moved next. If I tell you to move a white piece and you put either
king in checkmate, then you win by constraining me to move that king.
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Another type of Muller twist on Chess would keep the concept of ownership of the
pieces but would put a constraint on the color of the next cell a move is made to. In
Dots and Boxes [1] we might constrain the first line of the next move to be vertical or
horizontal. Moves in Checkers could be constrained so that the first piece movement of
a turn be slanted left or slanted right.

Recall that Mullers Quartor pieces have four attributes, such as height, and each
attribute has two values, such as short or tall. Each of the sixteen Quartor pieces could
be a Wyt Queen on an eight by eight chessboard, with one of the possible constraints
being “She who glides must be square.”; seven other constraints would be based on other
values of Quartor attributes (short, tall, round,...). It is easier to name such a game
Quartor Value Wyt Queens than to solve it.
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